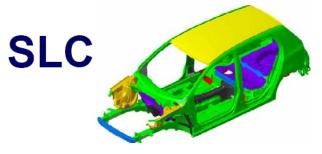
A Comparison of the Body Structures of WorldAutoSteel FutureSteelVehicle and the EU SuperLIGHT-CAR

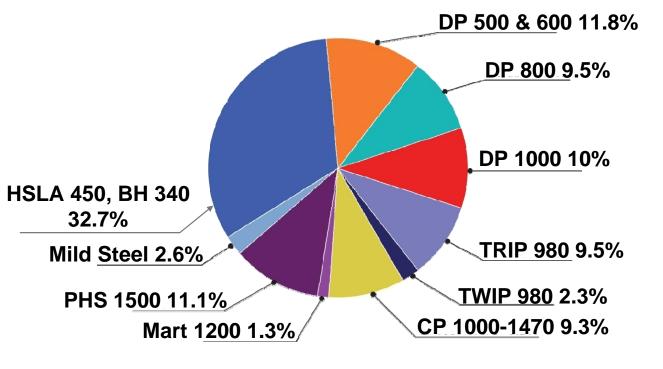
Reinventing Steel (Products and Applications)

October 1953 FIRST TEST STORY ON THE AUSTIN HEALEY DON'T PICK UP THAT BLONDE HITCHHIKER THE CASE FOR FOREIGN CARS BY SIR WILLIAM ROOTES

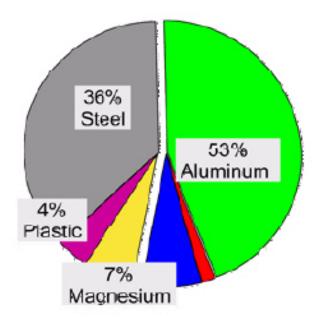
CARS Magazine

1970s – Body-on-Frame **Body-Frame-Integral** 1980s – Uncoated **Galvanized Rust Resistant** 1990s – Mild Steel **HSLA and Bake Hard Steel** and steel is on the wane" 2000s - Mild & HSLA **Advanced High Strength Steels**

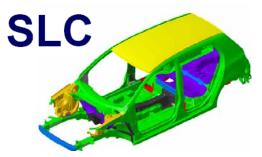

" The day of the passenger car made primarily of iron giving ground to aluminum, magnesium and plastics.


	FutureSteelVehicle	e SuperLightCar	
Projects:	4 Year Multi-Million Euro Advanced Material Lightweighting CAE Concept Body Structure Study		
Objectives:	Develop lightweight Structure High Volume Manufacturing		
-			
	Equivalent Performance		
	Reduce Fuel Use		
	Reduce CO2 Emissions		
	At no additional cost	Less than €5/kg saved	
Consortium	17 Steel Partners 3 Engineering Contractors	37 Partners	

•)) WorldAutoSteel


Advanced Lightweighting Materials

Sheet Only


Sheet, Extrusions, Castings

WorldAutoSteel

www.worldautosteel.org

Vehicle Dimensions

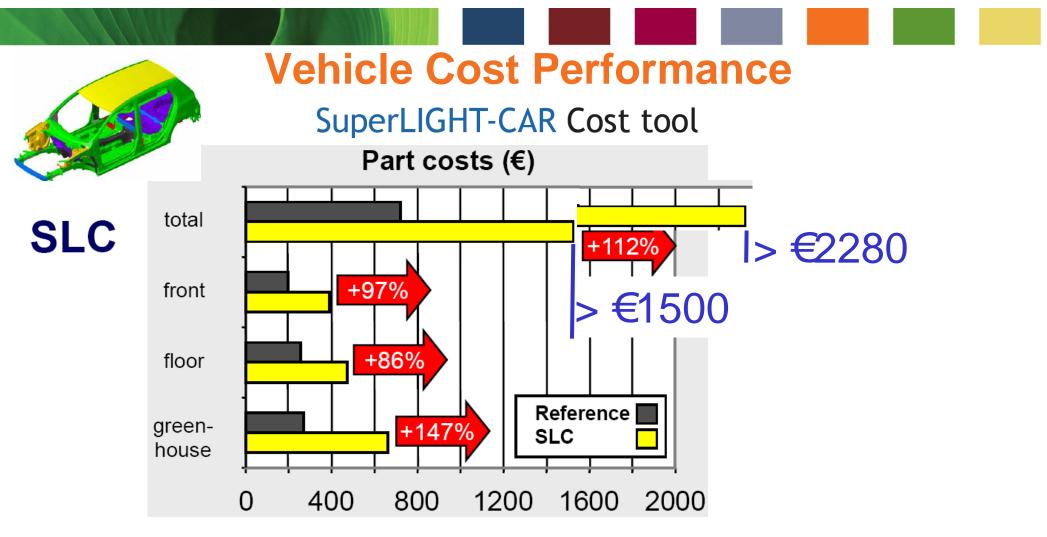
	FSV	SLC
Passenger	5	5
Length	3820 mm	4204 mm
Width	1759 mm	1705 mm
Wheel Base	2524 mm	2512 mm
Track	1470 mm	1493 mm
Height	1495 mm	1452 mm
Front Leg Room	1065mm	1054 mm
Rear Leg Room	850 mm	850 mm
Cargo	509 I.	250 I
Powetrain Mass	BEV 329 kg	ICE 197 kg
Gross Veh. Wt	1433 kg	1615 kg
Curb Wt	958 kg	1108 kg
BIW Mass	187.7 kg	180 kg

Vehicle Crash Performance

FSV

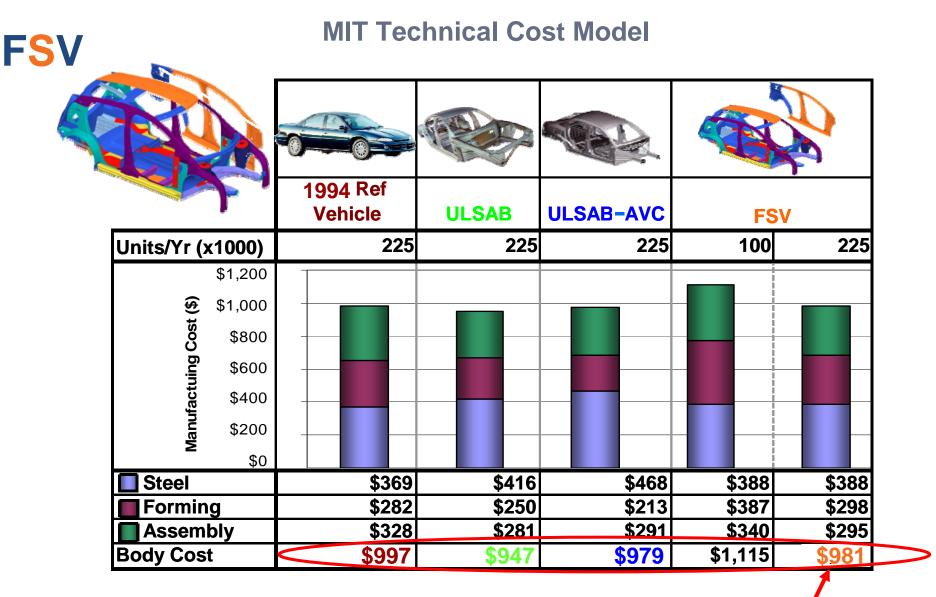
	EuroNCAP Front	Intrusion Foot Avg.= 91mm	Intrusion Foot Avg.= 45mm
		Door Opening = 18mm	Door Opening = 20mm
		Deceleration Pulse = 41 G	Deceleration Pulse = 56 G
	EuroNCAP Side	B-Pillar Intrusion = 80 mm	B-Pillar intrusion = 197 mm
		(Survival Space = 215 mm)	
	FMVSS 216 Roof Strength	4.25 x Vehicle Weight	3.0 x Vehicle Weight
	EuroNCAP Pole	Door Intrusion = 181 mm	B-Pillar intrusion = 297 mm
		(Survival Space = 169 mm)	
	EMVSS 201 Bear (No Offect)	Passed (No battery dammage,	Passed
	FMVSS 301 Rear (No Offset)	rear door open)	(Met Reference Vehicle)
North (US NCAP Frontal	Foot Avg.= 68mm	
American		Door = 9mm	
Market		Pulse = 40 G	
	IIHS Side Impact	B-Pillar Intrusion = 260 mm	
		(Survival Space = 136 mm)	
	FMVSS 301 Rear (70% Offset)	Passed (No battery damage,	
		rear door open)	
	FMVSS 214 Pole	Intrusion = 191 mm	
		(Survival Space = 159)	
	IIHS Roof Strength	4.25 x Vehicle Weight	

WorldAutoSteel


SLC

Vehicle Stiffness Performance

Torsional Stiffeness	19.6 KN-m/deg.	25.5 KN-m/deg.
1st Torsional Mode	54.8 Hz	50.0 Hz
1st Bending Mode	60.6 Hz	53.1 Hz


ARB Lightweighting Workshop May 18, 2010

- Body part cost for BIW is +112% over reference body
 - This yields a 7.85 Euro/kg light weight cost for body parts only

VW Group analysis

SLC project did not consider full joining costs, assembly cost, tooling cost and factory alterations to accommodate new materials
=> True cost/kilogram will be doubled

Vehicle Cost Performance

WorldAutoSteel

www.worldautosteel.org

€740

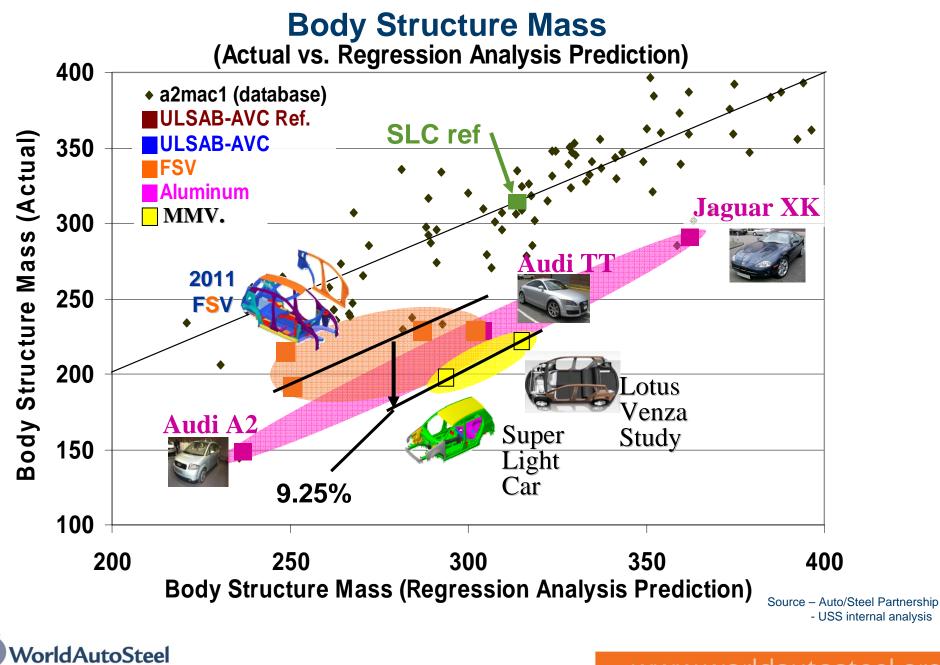
Vehicle Mass Performance

Mass Normalization Comparison

- A2MAC1 Tear Down Data Base 108 Vehicles
- Body Structure Mass = BIW + Paint and Sealer + Engine Cradle
- Performed Regression Analysis for Vehicle Attributes (non-performance)

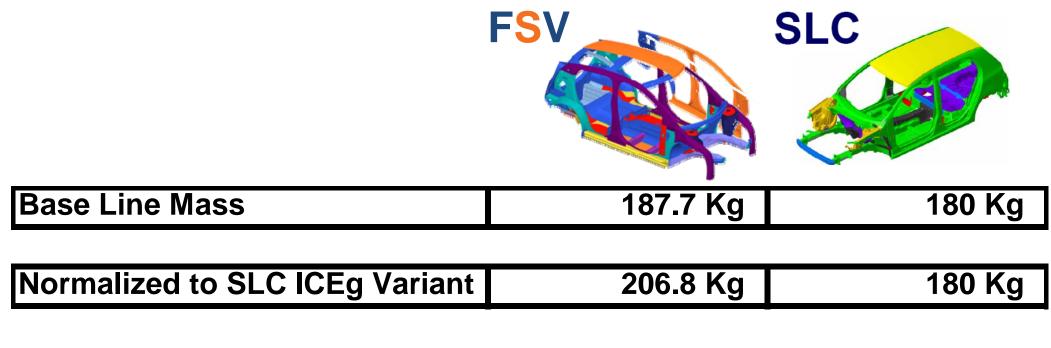
Attribute	Туре	
GVW (kg)	continuous variable	
Area (m ²)	continuous variable	
material	(Aluminum), (Steel)	
Body Type	Sedan, Hatchback, SUV, Van, Pickup,	
	Convertible, Station Wagon	
Drive Configuration	FWD, RWD, 4WD, AWD	
Model Year	Continuous variable	

• Correlation Attributes were GVW, Area, Drive Configuration, Material


$$\hat{m} = 3.418 (GVM, kg)^{0.438} (Area, m^2)^{0.599} \begin{vmatrix} 1.00 RWD \\ 1.08 AWD \end{vmatrix}$$

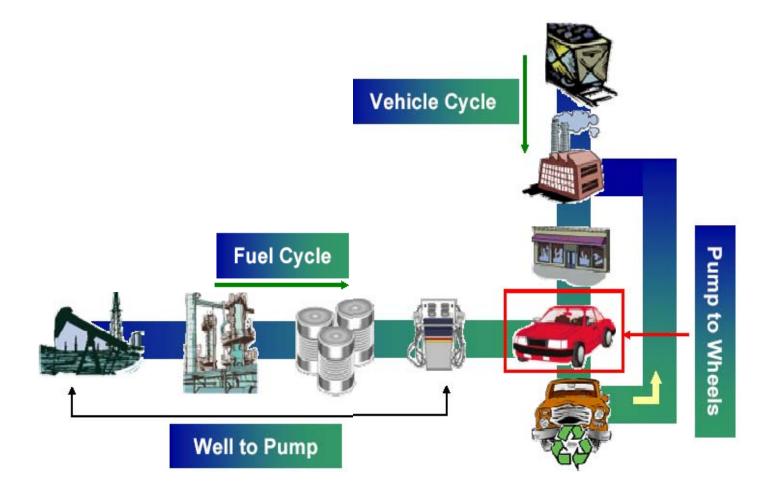
*Material not included in equation for more direct comparison

WorldAutoSteel


(1.02FWD)

FSV Compared to UltraLight – Mass

www.worldautosteel.org


Vehicle Mass Performance

Normalized to FSV BEV Variant	187.7 Kg	163 Kg

Vehicle CO₂ Emissions Performance Life Cycle Assessment

Source - Argonne national lab

www.worldautosteel.org

Vehicle CO₂ Emissions Performance Life Cycle Assessment

GHG from Production (in kg CO2eq/kg of material)

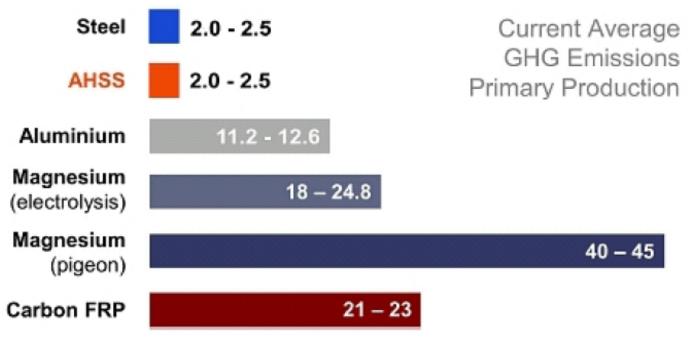
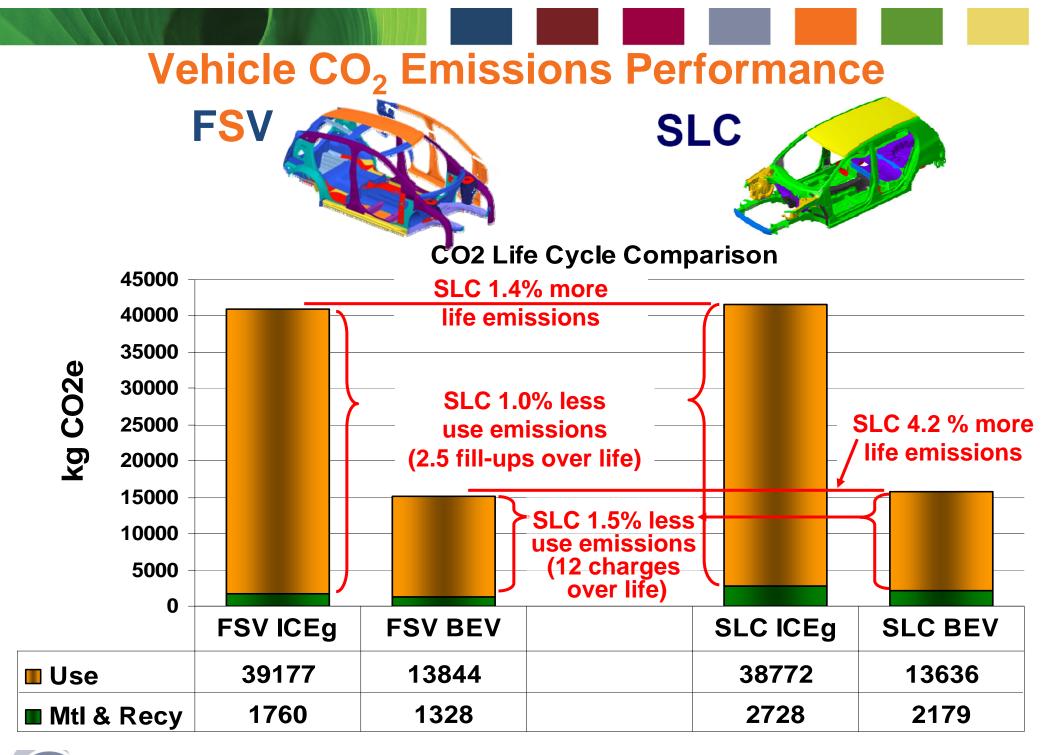


Figure 2.9: Material production Green House Gas (GHG) emissions


WorldAutoSteel

Source – World Steel association

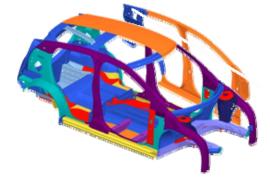
www.worldautosteel.org

- International Aluminum Association

- Roland Guirer UC Santa Barbara

FSV Compared to Multi-Material Weight, Cost, GHG Emissions				
		FSV	SLC	
				SLC Relative to FSV
	Weight	188 kg	180 kg	(9.25%)
	Cost	€740	€2280	308%
ICEg	Use GHG	39,177 kg	38,772 kg	(1.0%)
	Life Cycle GHG	40,937 kg	41,500 kg	1.4%
BEV	Use GHG	13,844 kg	13,636 kg	(1.5%)
	Life Cycle GHG	15,172 kg	15,815 kg	4.2%

Acknowledgements



All research activities are integrated in the european funded project **SLC** (<u>Su</u>stainable <u>P</u>roduction Technologies of <u>E</u>mission <u>R</u>educed <u>Light</u> weight <u>Car</u> concepts) with 6th Framework Programme

- SLC Sub-project & task leaders
- SLC consortium partners
- Supporting external organizations
- European Community

FutureSteelVehicle

FurtureSteelVehicle was accomplished by the technical contributions of the 17 member companies and the engineering contractors of EDAG, ETA and LMS

Thank you for your attention

